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ul. Żolnierska 14, 10-561 Olsztyn, Poland, Hasselt UniVersity, Biomedical Research Institute,
Agoralaan, Building D, B-3590 Diepenbeek, Belgium

ReceiVed: August 25, 2005; In Final Form: October 12, 2005

The parameters describing the kinetics of excited-state processes can possibly be recovered by analysis of the
fluorescence decay surface measured as a function of the experimental variables. The identifiability analysis
of a photophysical model assuming errorless time-resolved fluorescence data can verify whether the model
parameters can be determined and may lead to the minimal experimental conditions under which this is
possible. In this work, we used the method of similarity transformation to investigate the identifiability of
three kinetic models utilized to describe the time-resolved fluorescence of reversible intramolecular two-state
excited-state processes in isotropic environments: (1) model without added quencher, (2) model with added
quencher, (3) model with added quencher coupled with species-dependent rotational diffusion described by
Brownian reorientation. Without a priori information, model 1 is not identifiable. For model 2, two sets of
quenching rate constants and combinations of excited-state deactivation/exchange rate constants are possible,
but they cannot be allocated to a specific excited-state species. For both sets, upper and lower limits on the
excited-state deactivation/exchange rate constants can be obtained. For model 3, both spherically and
cylindrically symmetric rotors, with no change in the principal axes of rotation in the latter, are considered.
The fluorescenceδ-response functionsI|(t) and I⊥(t), for fluorescence polarized parallel and perpendicular,
respectively, to the electric vector of linearly polarized excitation, are used to define the sumS(t) ≡ I|(t) +
2 I⊥(t) and the differenceD(t) ≡ I|(t) - I⊥(t). The identifiability analysis is performed using theS(t) andD(t)
functions. Also for model 3, two sets of kinetic parameters (i.e., quenching rate constants, combinations of
deactivation/exchange rate constants, and rotational diffusion coefficients) exist, but these parameters cannot
be assigned unequivocally to a specific species. For the three models, an infinite number of alternative
spectroscopic parameters associated with excitation and emission are found.

1. Introduction

Time-resolved fluorescence measurements are commonly
used to unravel the kinetics of excited-state processes. The time
evolution of polarized fluorescence provides additional informa-
tion about the molecular system as compared with total
fluorescence decay. Time-resolved fluorescence depolarization
experiments not only provide information about the rotational
dynamics of fluorophores but also allow the study of, for
example, intramolecular excitation energy migration.1

To decide on the most suitable model to describe a specific
photophysical system, fluorescence decay traces are usually
measured under various experimental conditions. For the models
of reVersible intramolecular two-state excited-state processes
considered in this paper, the experimental variables are the exci-
tation and emission wavelengths, quencher concentration, and pol-
arization. In many instances, the fluorescence response after a
short excitation pulse can be analyzed in terms of a limited num-
ber of decay timesτ and their associated amplitudesR. However,
the empirical parameters{τ, R} are not the primary parameters
of interest. The more fundamental underlying parameters are

kinetic (rate constants for deactivation, exchange, and quench-
ing; rotational diffusion coefficients) and spectral parameters
related to excitation and emission.

When a specific model is proposed for the description of ex-
cited-state processes, one should find out first if the kinetic and
spectral parameters defining the model can be determined from
error-free time-resolved fluorescence data. This is the topic of
the deterministic identifiability (or identification) analysis.2-4

Such an analysis informs us which information is theoretically
accessible from the fluorescence decay surface and the type of
experiments that have to be performed to extract this information
from the data surface.

As the time evolution of fluorescence emanating from excited-
state processes can in many instances be described by a system
of coupled linear differential equations of first order, modeling
of excited-state processes can be done within the framework of
compartmental analysis. Indeed, excited-state systems are
formally equivalent to compartmental systems described in other
fields of research (see, for example, refs 2-4). Considering the
widespread use of compartmental analysis, it seems rather
surprising that compartmental modeling of excited-state pro-
cesses in photophysics has emerged relatively recently.5-7

Now let us define the term “compartment” in a photophysical
perspective. In photophysics, a compartment is defined as a
subsystem composed of a distinct type of species that acts
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kinetically in a unique way. The concentrations of the constituent
species can change by the exchange of material between
compartments through intramolecular or intermolecular pro-
cesses. In the context of compartmental modeling of excited-
state processes, compartments can be divided into two kinds,
ground and excited-state, depending upon the state of the species
concerned. There may be inputs from ground-state compart-
ments into one or more of the excited-state compartments by
photoexcitation. There is always output from the excited-state
compartments to the ground-state compartments through deac-
tivation. If the concentrations of the species in the ground state
do not change significantly upon photoexcitation, it suffices to
consider the excited-state compartments.

After the first identification of an intermolecular two-state
excited-state process,7 identifiability studies of a broad range
of models of intermolecular as well as intramolecular two-state
and three-state excited-state processes in isotropic solution have
been reported (see ref 8 for literature data). The identifiability
analyses of reversible intramolecular two-state excited-state
processes, both in the absence9,10 and in the presence11-13 of
quencher, have been confined to consideration of the whole
excited-state population, as monitored by total fluorescence
intensity observed at the “magic angle”. In the wide field of
time-resolved fluorescence spectroscopy, only a relatively small
part of the literature has been devoted to examining the problem
of excited-state processes linked to species-dependent rotational
diffusion. The explicit expressions describing the time-resolved
fluorescence anisotropy of two-state excited-state processes
coupled with species-dependent rotational diffusion are rather
elaborate, even without transient effects.14-17 The theoretical
work, which formed the basis for these expressions, was first
described by Chuang and Eisenthal.18

This paper provides the first study of the identifiability of
reVersible intramolecular two-state excited-state processes
coupled with species-dependent rotational diffusion. A separate
identifiability study of reversible intramolecular two-state
excited-state processes coupled with species-dependent rotational
diffusion is justified by the fact that, for these processes, in
contrast to the previously discussed intermolecular case,19 the
co-reactant concentration is not available as an experimental
variable.

There are several methods available for the analysis of the
deterministic identifiability (i.e., assuming error-free data). The
initial identification studies of reversible intramolecular two-
state excited-state processes9-13 made use of Markov parameters
and elementary functions of the rate constants. In this report,
we use the method of similarity transformation3,4,20,21because
it offers an elegant way of determining if a model isglobally
or locally identifiable, or completelyunidentifiable. A model
is uniquely (or globally) identifiable if the parameters of the
assumed model can be uniquely determined from the idealized
experiment. If there are a finite number of alternative parameter
estimates for some or all of the model parameters that fit the
data, the model is locally identifiable. An infinite number of
model parameter estimates fitting the data makes the considered
model unidentifiable. An extra bonus of the similarity trans-
formation approach is that the relationship between the true and
the alternative model parameters is explicitly provided.

The paper is organized as follows. In section 2, the general
concepts of identifiability via similarity transformation are
presented. Section 3A deals with the identification of the model
of a reversible intramolecular two-state excited-state process
without transient effects (i.e., with kinetics governed by time-
independent rate constants). In section 3B, we investigate what

the effect is on the identifiability when quencher is added to
such a photophysical system. For both models, the fluorescence
δ-response is expressed in matrix form appropriate for the
similarity transformation method. Finally, in section 3C, we
describe the identification of the model of a reversible intramo-
lecular two-state excited-state process, without transient effects,
in the presence of quencher and coupled with species-dependent
rotational diffusion. Spherically and cylindrically symmetric
rotors are considered, with, in the latter case, no change in the
principal axes of the diffusion tensors of the two excited-state
species. The case in which the principal axes of the diffusion
tensors of the interconverting excited-state species are not the
same is very complex18 and is not considered here.

Imperfect data resulting from noisy observations sampled over
a limited time range affect the accuracy and precision with which
model parameters can be estimated. This numerical parameter
estimation and the statistical properties of the parameter
estimates are the subject of the second stage of any identifiability
analysis and is callednumerical identifiability. A study of the
curve-fitting, which takes into account the noise level on the
experimental data, the sampling, and the sensitivity of the
algorithms used in the estimation of the parameters, is beyond
the scope of this paper.

2. Identifiability Analysis via Similarity Transformation

General Concepts.For a linear, time-invariant compartmen-
tal system withN excited-state compartments, the fluorescence
δ-response functionf(t) can be expressed as22

whereb is a column vector of dimensionN whose elements
are the initial concentrations of each excited-state compartment,
c is a 1 × N vector related to the contribution of each
compartment to the emission,A is a N × N matrix containing
the kinetic information for all processes.

The set (A, b, c) is called a realization of the fluorescence
δ-response functionf(t). In the identification study, one
investigates whether it is possible to find different realizations
of f(t), e.g., (A+, b+, c+), so that

In other words, the fluorescenceδ-response function must be
the same for the true (A, b, c) and the alternative (A+, b+, c+)
model parameter set.3,4

Unique identifiability is attained whenA+ ) A, b+ ) b, and
c+ ) c (i.e., a unique set of model parameters is obtained). The
model is locally identifiable when there is a limited set of
alternativeA+, b+, andc+. An unidentifiable model is one for
which there is an infinite number of alternativeA+, b+, and
c+. The specific definitions of the compartmental matrixA, the
excitation coefficientsb, and the emission coefficientsc are
given in section 3.

A different (alternative) realization (A+, b+, c+) of f(t) is
related to the true realization (A, b, c) via similarity transforma-
tion,3,4,20,21

whereT is a nonsingular matrix (i.e., detT * 0).
The alternativeb+ andc+ are given by

f(t) ) c exp(tA)b, t g 0 (1)

f(t, A, b, c) ) f(t, A+, b+, c+) (2)

T A+ ) A T (3)

b+ ) T-1 b (4)

c+ ) c T (5)
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Equations 3-5 clearly illustrate that the similarity transfor-
mation elucidates the relation between the true and the alterna-
tive parameters. Equations 3-5 must be satisfied for each
experimental condition. For the intramolecular models consid-
ered here, possible experimental variables are quencher concen-
tration [Q]k, excitation wavelengthλi

ex, and emission wave-
lengthλj

em. This implies that the matrixT should be indepen-
dent of [Q]k, λi

ex, andλj
em.8

3. Identifiability Analysis

A. Reversible Intramolecular Two-State Excited-State
Process.Consider the causal, linear, time-invariant photophysi-
cal system consisting of two different species A and B
interchanging via intramolecular processes, as depicted in
Scheme 1. The two ground-state species are assumed to be in
equilibrium. Photoexcitation produces the excited-state species
A* and B*, which can decay by fluorescence (kF) and nonra-
diative (kNR) processes.k0A () kFA + kNRA) andk0B () kFB +
kNRB) stand for the composite deactivation rate constants of A*
and B*, respectively. The rate constant describing the intramo-
lecular transformation of A* into B* is represented bykBA, while
the reverse process is described bykAB. The rate constants are
obviously nonnegative.

When the photophysical system shown in Scheme 1 is excited
with a δ-pulse of low intensity at time zero, so that the ground-
state species population is not appreciably depleted, the
fluorescenceδ-response functionfij(t) at emission wavelength
λj

em due to excitation atλi
ex is given by9

with the matrixA given by9

bi is a 2× 1 vector with elementsbli ) [l*] t)0 (l stands for A
or B), specifying the initial concentrations of excited species
l*, which depend on the excitation wavelengthλi

ex.9

cj is the 1× 2 vector of the emission weighting factorscmj

of speciesm* (m represents A or B) at emission wavelength
λj

em.22 The coefficientcmj is defined as22

wherekFm is the fluorescence rate constant of speciesm*, the

subscriptj refers to the observation wavelength range,∆λj
em,

andFm(λj
em) is the spectral emission density of speciesm*.9

Matrix T used in the similarity transformations is expressed
by eq 9:

Performing the matrix multiplication of eq 3 yields a set of four
simultaneous equations:

There are infinite numbers of alternativek0A
+ , kBA

+ , k0B
+ , andkAB

+

values that satisfy eq 10, and the model cannot be identified in
terms of rate constants. There are also unlimited numbers of
alternativebA

+ andbB
+, calculated according to eq 4. The same

is true for the cA
+ and cB

+ values calculated via eq 5. To
summarize, in the absence of a priori information, the model
of reversible intramolecular two-state excited-state events is
unidentifiable, in accordance with the deterministic identification
analysis based on Markov parameters and elementary functions
of the rate constants.9

In the wide-ranging deterministic identifiability study pre-
sented in ref 9, we have demonstrated under which conditions
the current model becomes identifiable. It is worthwhile to
recollect the results of that study. For the model to be globally
identifiable, unique values must be found for the rate constants
{k0A, kBA, k0B, kAB} and the spectral parameters related to
excitation {bA, bB} and emission{cA, cB}. In photophysics,
values for{bA, bB} and{cA, cB} cannot be obtained.8 Therefore,
it is more appropriate to use the normalized parameters{b̃A,
b̃B} and{c̃A, c̃B}[b̃A ) bA/(bA + bB), b̃B ) 1 - b̃A, c̃A ) cA/(cA

+ cB), andc̃B ) 1 - c̃A]. A more suitable way of formulating
the problem of identifiability is to use the normalizedb̃A and
c̃A together with {k0A, kBA, k0B, kAB}. The results of the
deterministic identifiability study accessible in ref 9 can be
summarized as follows: in all cases at least three (kinetic or
spectroscopic) parameters of the intramolecular two-state excited-
state process must be known for the model to be identifiable.
These three parameters can be (i) two rate constants and one
normalized spectroscopic parameter [(1) twokij and oneb̃A, (2)
two kij and onec̃A]; (ii) one rate constant and two spectroscopic
parameters [(3) onekij, oneb̃A, and onec̃A, (4) onekij and two
b̃A, (5) onekij and twoc̃A]; (iii) three spectroscopic parameters
[(6) two b̃A and onec̃A, (7) oneb̃A and twoc̃A, (8) threeb̃A, (9)
threec̃A]. Note that the conditions are symmetrical inb̃A and
c̃A. For conditions 1-3, one decay trace is necessary and
sufficient, for conditions 4-7 two decay traces are necessary
and sufficient, while for conditions 8-9 three are needed and
suffice. The conditions 3, 6, and 7 require that the known{b̃A,
c̃A} values are different from{1, 0} or {0, 1}. That means that
if one species is excited exclusively, one should NOT observe
the fluorescence in the wavelength region where only the other
species emits [that is,b̃A ) 1 andc̃A ) 0 or b̃A ) 0 andc̃A )
1 are NOT valid spectroscopic parameter combinations for
conditions 3, 6, and 7]. Conditions 6-9 indicate that, theoreti-
cally, spectroscopic information alone can suffice for the model
to be identifiable. The identifiability study clearly shows that

SCHEME 1. Representation of the Model of a
Reversible Intramolecular Two-State Excited-State
Processa

a The excited-state processes are described by the deactivation rate
constantsk0A and k0B, and the excited-state exchange rate constants
kBA andkAB

fij(t) ) cj exp(t A)bi, t g 0 (6)

A ) [-(k0A + kBA) kAB

kBA -(k0B + kAB) ] (7)

cmj ) kFm∫∆λj
em Fm(λj

em)dλem (8)

T ) [t1 t2
t3 t4] (9)

-t1(k0A
+ + kBA

+ ) + t2kBA
+ ) -t1(k0A + kBA) + t3kAB (10a)

t1kAB
+ - t2(k0B

+ + kAB
+ ) ) -t2(k0A + kBA) + t4kAB (10b)

-t3(k0A
+ + kBA

+ ) + t4kBA
+ ) t1kBA - t3(k0B + kAB) (10c)

t3kAB
+ - t4(k0B

+ + kAB
+ ) ) t2kBA - t4(k0B + kAB) (10d)
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exciting only one species (b̃A ) 1 or b̃A ) 0), either through
different absorption profiles or a large difference in equilibrium
concentration, can never lead to a uniquely identifiable model.
In this case, the preexponentials (R1, R2) of the fluorescence
decay have the same absolute values but opposite signs (R1/R2

) -1), and such decay is not useful for attaining global
identifiability. Furthermore, knowledge of the values of only
one or two rate constants, based on model compounds, is not
sufficient to uniquely identify the model. Condition 3 is perhaps
the situation that is used most often for obtaining unique values
for the relevant model parameters. In most cases in which
condition 3 is applied, one assumes (i) that the deactivation rate
constantk0A in the intramolecular model can be equated with
the deactivation rate constant of a suitable reference compound
and (ii) that species A is excited exclusively (b̃A ) 1), and (iii)
that only the emission from A* is monitored (c̃A ) 1). Because
of symmetry between A(*) and B(*) in the considered model, A
can be replaced by B in the latter sentence. It must be
emphasized that the values obtained in this manner are based
on assumptions (one presumes that the value ofk0A measured
for the reference compound is transferable to the intramolecular
excited-state process and thatb̃A ) 1 andc̃A ) 1), which must
be verified (see section 3B).23 The results of the deterministic
identifiability study9 have been confirmed by the curve-fitting
of computer-generated fluorescence decay traces. For more
details, we refer to ref 9.

B. Reversible Intramolecular Two-State Excited-State
Process with Quenching.Addition of an external quencher Q
at concentration [Q]k to the intramolecular system shown in
Scheme 1 accelerates the depopulation of the excited-state
species A* and B*. The kinetic model of such an intramolecular
system with added quencher is depicted in Scheme 2. It is
assumed that the intermolecular quenching of A* and B* can
be described by the time-invariant rate constantskqA andkqB,
respectively. It is further presumed that the added quencher
affects only the excited-state species deactivation and does not
in any way change the ground-state equilibrium.

The fluorescenceδ-response functionfijk(t) for quencher
concentration [Q]k, monitored at emission wavelengthλj

em and
due to excitation atλi

ex is given by11,12

with the matrixAk expressed as11,12

The 2× 1 vectorbi and the 1× 2 vectorcj are defined as in
section 3A.11,12

The matrix multiplication of eq 3 withA ) Ak given by eq
12 andT expressed by eq 9 yields the following four equations:

The elementsti (i ) 1, ..., 4) ofT must be independent of
[Q]k so that the rhs of eq 13 have to be zero [t1(kqA

+ - kqA) )
0, t2(kqB

+ - kqA) ) 0, t3(kqA
+ - kqB) ) 0, t4(kqB

+ - kqB) ) 0].
One can envisage that several combinations ofti (i ) 1, ...,

4), kqA
+ , andkqB

+ are possible to satisfy the latter four equations.
However, assumingkqA * kqB only two solutions are possible.
Case 1: t1 * 0, t4 * 0, t2 ) t3 ) 0, kqA

+ ) kqA, kqB
+ ) kqB and

Case 2: t1 ) t4 ) 0, t2 * 0, t3 * 0, kqA
+ ) kqB, kqB

+ ) kqA.
Now we shall consider Case 1. The rhs of eq 13a is zero if

t1 * 0 andkqA
+ ) kqA. Then the rhs of eq 13c is zero ift3 ) 0

(becausekqA
+ - kqB * 0). SinceT must be nonsingular (detT

* 0) we havet4 * 0. The requirement that the rhs of eq 13d be
zero leads tokqB

+ ) kqB. The rhs of eq 13b is zero ift2 ) 0
(becausekqB

+ - kqA * 0).
Under the conditions thatt1 * 0, t4 * 0, t2 ) t3 ) 0 we can

proceed as follows. From eq 13a we havek0A
+ + kBA

+ ) k0A +
kBA; from eq 13d it follows thatk0B

+ + kAB
+ ) k0B + kAB.

Equations 13b and 13c now reduce to, respectively, eqs 14a
and 14b:

This leads tokAB
+ kBA

+ ) kABkBA. To conclude, whenT is given
by

the individual deactivation and exchange rate constants cannot
be determined. Only the sumsSA ≡ k0A + kBA andSB ≡ k0B +
kAB and the productP ≡ kAB kBA can be recovered. The
alternative set is identical to the original one:SA

+ (≡ k0A
+ +

kBA
+ ) ) SA, SB

+ (≡ k0B
+ + kAB

+ ) ) SB, andP+ (≡ kAB
+ kBA

+ ) ) P.
So, given that there are three equations and four unknown rate
constants (k0A

+ , kBA
+ , k0B

+ , kAB
+ ), unique values for the four rate

constants cannot be found. However, lower and upper limits
on these rate constants can be set:12,13

SCHEME 2: Representation of the Model of a
Reversible Intramolecular Two-State Excited-State
Process with Added Quenchera

a It is assumed that the quencher Q only has an effect on the excited
species and does not affect the ground-state equilibrium. The additional
quenching of A* and B* due to the external quencher Q is described
by the rate constantskqA andkqB, respectively. The rate constantsk0A,
k0B, kBA, andkAB are defined as in Scheme 1.

fijk(t) ) cj exp(tAk)bi, t g 0 (11)

Ak ) [-(k0A + kBA + kqA[Q]k) kAB

kBA -(k0B + kAB + kqB[Q]k) ]
(12)

-t1(k0A
+ + kBA

+ - k0A - kBA) + t2kBA
+ - t3kAB )

t1(kqA
+ - kqA)[Q]k (13a)

t1kAB
+ - t2(k0B

+ + kAB
+ - k0A - kBA) - t4kAB )

t2(kqB
+ - kqA)[Q]k (13b)

-t3(k0A
+ + kBA

+ - k0B - kAB) + t4kBA
+ - t1kBA )

t3(kqA
+ - kqB)[Q]k (13c)

t3kAB
+ - t4(k0B

+ + kAB
+ - k0B - kAB) - t2kBA )

t4(kqB
+ - kqB)[Q]k (13d)

t1kAB
+ ) t4kAB (14a)

t4kBA
+ ) t1kBA (14b)

T ) [t1 0
0 t4] (15)
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If one of the deactivation (e.g.,k0A
+ ) k0A) or exchange rate

constants, together with one of the quenching rate constants (e.g.
kqA

+ ) kqA), is known, the remaining rate constants are uniquely
determined from eq 13:kqB

+ ) kqB, kBA
+ ) kBA, k0B

+ ) k0B, kAB
+

) kAB, andt1 ) t4, t2 ) t3 ) 0 (i.e.,T ) t1 I2 with I2 the 2×
2 identity matrix). In this case, the alternative rate constants
are identical with the true ones, and all deactivation/exchange
and quenching rate constants are uniquely determined.

There are an unlimited number of sets of alternativeb+ (eq
4) andc+ (eq 5) for Case 1:

so that

Note that eqs 4 and 5 always lead toc+ b+ ) c b, independent
of the form of the nonsingularT. This is to be expected because
this equality is equivalent tof+(0) ) f(0); that is, the fluorescence
δ-response function at time zero is the same for the true and
alternative spectral parameters. (Since Markov parameterm0 is
given bym0 ) c b, the above-mentioned equality also can be
written asm0

+ ) m0). Equation 17c satisfies this equality.
Now we consider Case 2. The rhs of eq 13a is zero if,

alternatively, t1 ) 0 and kqA
+ * kqA. The nonsingularity

requirement ofT (det T * 0) leads tot2 * 0 andt3 * 0. The
requirement that the rhs of eqs 13b and 13c be zero leads to
kqB

+ ) kqA and kqA
+ ) kqB, respectively. The rhs of eq 13d is

zero if t4 ) 0 (becausekqB
+ - kqA * 0).

Under the conditions thatt2 * 0, t3 * 0, t1 ) t4 ) 0 we can
proceed as follows. From eq 13b we havek0B

+ + kAB
+ ) k0A +

kBA; from eq 13c it follows thatk0A
+ + kBA

+ ) k0B + kAB.
Equations 13a and 13d now reduce, respectively, to eqs 18a
and 18b:

which lead tokAB
+ kBA

+ ) kABkBA. To conclude, whenT is given
by

the alternative set of rate constant combinations isSA
+ ) SB, SB

+

) SA, and P+ ) P. Hence, the alternative set contains the
original rate constant combinations but with switched labeling
(that is, all rate constants of A* are now those of B* and vice
versa). In other words, two sets of rate constant combinations
are possible, but they cannot be assigned unambiguously to a
specific species. Note thatSA

+ and SB
+ are always correctly

associated with the rate constants of quenching.

Since there are three equations and four unknown deactivation
and exchange rate constants (k0A

+ , kBA
+ , k0B

+ , kAB
+ ), unique values

for these four rate constants cannot be found. However, the rate
constants have to satisfy the following inequalities:12,13

The number of alternative sets ofb+ (eq 21a) andc+ (eq 21b)
for Case 2 is limitless too:

so that

Equation 21c satisfies the conditionc+ b+ ) cb.
If one of the exchange or deactivation rate constants (e.g.,

k0A
+ ) k0A) is known, and one of the quenching rate constants

is switched (kqA
+ ) kqB), the remaining rate constants are

uniquely determined from eq 13:kqB
+ ) kqA, kBA

+ ) k0B + kAB

- k0A, k0B
+ ) k0A + kBA - kABkBA/(k0B + kAB - k0A), kAB

+ )
kABkBA/(k0B + kAB - k0A) and t2/t3 ) kAB/(k0B + kAB - k0A).

All cases in which the rhs of one of the eqs 13 is set to zero
by simultaneously settingti (i ) 1, ..., 4) and the difference in
quenching rate constants (kqx

+ ) kqy, x, y ) A, B) equal to zero
leads to contradictions. We consider one case to illustrate this.
The rhs of eq 13a is zero if simultaneouslyt1 ) 0 andkqA

+ )
kqA. The conditiont1 ) 0 and the requirement detT * 0 lead
to t2 * 0 andt3 * 0. The requirement that the rhs of eq 13c be
zero produceskqA

+ ) kqB. This equality in combination withkqA
+

) kqA leads tokqA ) kqB, which is in contradiction with the
assumption thatkqA * kqB. A similar reasoning can be followed
starting with the rhs of eqs 13b, 13c, or 13d. The same
conclusions as just described will be obtained.

Now we consider the case in whichkqA ) kqB () kq). The
requirement that the rhs of eq 13 should be zero leads to four
equations [ti(kq

+ - kq) ) 0, i ) 1, ..., 4]. If one assumeskq
+ )

kq, the matrixT can be given by eqs 15 or 19 or other possible
forms of T containing three or four nonzero elementsti. The
only condition for the rate constants that can be deduced from
eq 13 (with the rhs set to zero) is that the determinant of the
coefficients of the system of the four homogeneous equations
in four unknowns{k0A

+ , kBA
+ , k0B

+ , kAB
+ } is equal to zero. An

infinite number of solutions for the alternative rate constants{
k0A

+ , kBA
+ , k0B

+ , kAB
+ } can be obtained. Alternatively, the rhs of eq

13 can be set to zero ift1 ) t2 ) t3 ) t4 ) 0. This, however,
leads to a nullT matrix, which is not an acceptable transforma-
tion matrix. The only information that can be obtained forb+

andc+ is thatc+ b+ ) c b. As mentioned before, this equality
is always valid, for any nonsingularT.

To summarize, the model of a reversible intramolecular two-
state excited-state process with added quencher is locally
identifiable, in agreement with the deterministic identification
analysis based on Markov parameters and elementary functions
of the rate constants.11,12

0 < k0A
+ < SA - P/SB (16a)

P/SB < kBA
+ < SA (16b)

0 < k0B
+ < SB - P/SA (16c)

P/SA < kAB
+ < SB (16d)

b1
+ ) b1/t1 andb2

+ ) b2/t4 (17a)

c1
+ ) c1t1 andc2

+ ) c2t4 (17b)

c1
+ b1

+ ) c1b1 andc2
+ b2

+ ) c2b2 (17c)

t2kBA
+ ) t3kAB (18a)

t3kAB
+ ) t2kBA (18b)

T ) [0 t2
t3 0 ] (19)

0 < k0A
+ < SB - P/SA (20a)

P/SA < kBA
+ < SB (20b)

0 < k0B
+ < SA - P/SB (20c)

P/SB < kAB
+ < SA (20d)

b1
+ ) b2/t3 andb2

+ ) b1/t2 (21a)

c1
+ ) c2t3 andc2

+ ) c1t2 (21b)

c1
+b1

+ ) c2b2 andc2
+b2

+ ) c1b1 (21c)
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In the deterministic identifiability analysis published in ref
11, we have investigated the prerequisites for obtaining the
unique set of model parameters. It is instructive to recall the
results of that study. The following conditions have to be
fulfilled to make a reversible intramolecular two-state excited-
state process with added quencher uniquely identifiable: (i) the
fluorescence decay surface must include at least one set of decay
traces measured for a minimum of three different quencher
concentrations at the same excitation/emission wavelength
setting (one of the quencher concentrations may be equal to
zero); (ii) the two rate constants of quenching must be different
(kqA * kqB); (iii) at least one model parameter (kij, b̃A, or c̃A)
must be known. Under these conditions, four sets of model
parameters are mathematically possible. If the known model
parameter is a rate constant (k0A, kBA, k0B, or kAB, but notkqA

or kqB), decay traces of a suitable reference compound measured
at a minimum of two quencher concentrations must be included
in the analysis to obtain the unique set of rate constant values.
The unique set of (b̃A, c̃A) values can be recovered by including
decay curves at a minimum of two quencher concentrations and
at an additional excitation wavelength with a differentb̃A, or at
another emission wavelength with a differentc̃A. If the known
model parameter is ab̃A value different from zero and one, the
fluorescence decay surface must include at least nine decay
traces measured at four emission wavelengths with differentc̃A

(corresponding to at least three quencher concentrations at the
first emission wavelength and at least two quencher concentra-
tions at the other three emission wavelengths), to uniquely
determine the set of model parameters. If the known model
parameter is ac̃A value different from zero and one, the
fluorescence decay surface must include at least nine decay
traces measured at four excitation wavelengths with different
b̃A (corresponding to at least three quencher concentrations at
the first excitation wavelength and at least two quencher
concentrations at the other three excitation wavelengths), to
uniquely determine the set of model parameters. A decay trace
with b̃A ) 1 andc̃A ) 0 or b̃A ) 0 andc̃A ) 1 never provides
useful information. Full details can be found in ref 11.

In the absence of a priori information, upper and lower bounds
can be specified for the rate constantskij if (i) the fluorescence
decay surface includes at least one set of decay traces measured
at a minimum of three different quencher concentrations and
(ii) the rate constants of quenching are different (kqA * kqB).12

This analysis method allows one to distinguish reversible from
irreversible intramolecular two-state excited-state processes.

In a numerical identifiability study,13 computer-generated
fluorescence decay surfaces have been used to investigate the
criteria under which reliable estimates of the bounds on the rate
constantskij can be obtained. If the values ofkqA andkqB are
substantially different, reliable estimates are obtained. IfkqA and
kqB are nearly equal in value, the quality of the estimates of the
bounds depends on the combinations of the values of the rate
constantskij. It may happen that no reliable limits for the rate
constants can be obtained so that another quencher is required.

The previously presented identifiability analyses for models
of intramolecular two-state excited-state processes11-13 have
been experimentally investigated, using bis(2-pyrenecarboxylic
acid) 1,6-hexanediyl ester with iodomethane as quencher.23 Two
different data analysis approaches were examined. In the first
approach, where no information was known beforehand, it was
possible to obtain upper and lower limits on the rate constants
{k0A, kBA, k0B, kAB} by analyzing at different preset values of
the rate constantk0A. For the other approach, where the time-
resolved emission of the reference compound hexyl 2-pyren-

ecarboxylate was used in the fittings, the parameter values of
k0A andkqA were defined by linking these parameters with the
corresponding rate constants of the reference compound.23

The identifiability of models of irreversible intramolecular
two-state excited-state processes with added quencher is beyond
the scope of the current study. Details on how to distinguish
the two possible competing models (one with a unidirectional
excited-state process and one without excited-state process) can
be found in ref 24.

C. Reversible Intramolecular Two-State Excited-State
Process with Species-Dependent Rotational Diffusion and
Quenching.The linear and time-invariant photophysical system
consisting of two different interchanging species A and B, each
with distinct rotational characteristics, as depicted in Figure 1,
is considered. The deactivation rate constantsk0A andk0B, the
excited-state exchange rate constantskBA and kAB, and the
quenching rate constantskqA andkqB are defined as in Schemes
1 and 2. All the rate constants are assumed independent of the
instantaneous orientation of the species. The rotational relaxation
of each excited-state species is governed by its principal
rotational diffusion constants, hereD| and D⊥ for rotation,
respectively, of and about the principal axis of each of the
cylindrically symmetric rotors depicted in Figure 1.

When the photophysical system shown in Figure 1 is excited
with a δ-pulse of low intensity at time zero, so that the ground-
state species population is not appreciably depleted, the
fluorescenceδ-response functionI|ijk(t) for the plane-polarized
component of emission of the two excited states (A* and B*),
having its electric vector polarized parallel to the electric vector
of the plane-polarized excitation light, and the fluorescence
δ-response functionI⊥ijk(t) for the perpendicularly polarized
component, can be combined in “sum”Sijk(t) ≡ I|ijk(t) + 2I⊥ijk-
(t) and “difference”Dijk(t) ≡ I|ijk(t) - I⊥ijk(t) functions.

The subscriptsi, j, andk in I|ijk(t), I⊥ijk(t), Sijk(t), andDijk(t)
refer to the excitation wavelengthλi

ex, the emission wavelength
λj

em, and the quencher concentration [Q]k, respectively.

Figure 1. Graphic representation of a reversible intramolecular two-
state excited-state process, including rotation. Species A* and B* are
pictured as being initially excited from their ground states A and B by
an infinitely short linearly polarized light pulse at wavelengthλi

ex in a
unique absorption band for each species. The rate constantsk0A, k0B,
kBA, kAB, kqA, andkqB are defined as in Schemes 1 and 2. The species
rotate with rate constants determined by their corresponding rotational
diffusion tensors, which differ between the species. The polarized
emission of each species depends on the relative orientation of its
emission transition moment (with unit vectorêA or êB) at the time of
emission with respect to the absorption moment (with unit vectorâA

or âB) at the time of excitation of the species initially excited.
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The identification is straightforward if one usesSijk(t) and
Dijk(t) instead ofI|ijk(t) andI⊥ijk(t). Sijk(t) corresponds to the total
time-resolved emission of the system and can be expressed in
matrix form by16

Sijk(t) is independent of the rotational diffusion and does not
contain any information about the orientations of the transition
moments.

Dijk(t) contains information about rotational diffusion and can
be expressed as16

Now we will define the vectors and matrices in eqs 22 and 23.
Matrix Ak,00 in eq 22 is given by eq 24:

ADk in eq 23 is defined as

with blocksADk,2M given by eq 26:

with M ) -2, -1, 0, 1, 2.
Dl,2M (l symbolizes either A or B) is given by

Note the invariance of eqs 26 and 27 to the sign ofM.
D⊥l andD|l (see Figure 1) are the components of the rotational

diffusion tensor of thecylindrically symmetric speciesl in its
molecular reference frame (x, y, z), chosen such that the
rotational diffusion tensor is diagonal,16 reducing to the unique
componentDl () D⊥l ) D|l) in the case of thespherically
symmetric rotorl.

Vector bik,LM [with L ) M ) 0 (in eq 22), orL ) 2 andM
) (2, (1, 0 (in eq 23)] contains the excitation coefficients
blik,LM (l stands for either species A or B). As before, the
subscriptsi and k in bik,LM refer to the excitation wavelength
λi

ex and quencher concentration [Q]k, respectively. The sub-
scriptsL andM of theblik,LM coefficients refer to the orientation
of the absorption transition moments. The elementsblik,LM can
be expressed as the product of the initial concentration ofl*,
blik, the appropriate spherical harmonicYL

M(âl)25 for the orien-
tation of the absorption transition momentâl in the molecular
frame of speciesl, and a scaling factorBL:16

with B0 ) 1/12 x1/π3 andB2 ) 1/30 x5/π3.16

For L ) M ) 0, we haveY0
0(âl) ) 1/x4π andblik,00 ) blik/

24π2.
The 2× 1 vectorbik,00 in eq 22 is explicitly given by eq 29:

while the 10× 1 vectorbik,2M in eq 23 is expressed as

Vector cj,LM [with L ) M ) 0 (in eq 22), orL ) 2 andM )
(2, (1, 0 (in eq 23)] contains the corresponding emission
coefficientscmj,LM (m represents either species A* or B*). As
before, the subscriptj in cj,LM refers to the emission wavelength
λj

em. The emission coefficientscmj,LM are given by:16

with C0 ) 16/3xπ5, C2 ) 16/15 xπ5/5, andYL
M
/(êm) is the

complex conjugate of the appropriate spherical harmonic for
the orientation of the emission transition momentêm in the
molecular frame.

For L ) M ) 0, we havecmj,00 ) 8π2cmj/3.
The coefficientcmj is defined by eq 8. Vectorcj,00 in eq 22 is

explicitly given by eq 32:

while the 1× 10 vectorcj,2M in eq 23 is expressed as:

The matrix and vector formulations ofA (eqs 24-26), b (eqs
29, 30), andc (eqs 32, 33) will turn out to be particularly suitable
in addressing the identification analysis.

As bothSijk(t) (eq 22) andDijk(t) (eq 23) can be expressed as
a function ofA, b, andc, the identifiability analysis via similarity
transformation is carried out using theSijk(t) andDijk(t) functions.

In the following, it will be assumed thatkqA * kqB. We start
with the identification involvingSijk(t) (eq 22) and the matrix
multiplication (eq 3) withAk,00 (eq 24). SinceSijk(t) reflects the
time dependence of the total fluorescence and contains informa-
tion only on the excited states, the identifiability analysis will
be identical to that of a reversible intramolecular two-state
excited-state process with quenching involvingfijk(t) (eq 11) with
Ak defined by eq 12 (section 3B). To summarize the results,
two sets of rate constant values are obtained: (1) set S1 (the
original or “true” set) is found whenT is given by eq 15:

(2) Set S2 (the alternative set with switched labels) is found
whenT is given by eq 19:

bik,00 ) [bAik,00 bBik,00]T (29)

bik,2M ) [bAik,2-2 bBik,2-2 bAik,2-1 bBik,2-1 bAik,20

bBik,20bAik,21bBik,21bAik,22bBik,22]
T (30)

cmj,LM ) CLcmjYL
M*( êm) (31)

cj,00 ) [cAj,00 cBj,00] (32)

cj,2M )

[cAj,2-2 cBj,2-2 cAj,2-1 cBj,2-1 cAj,20cBj,20cAj,21cBj,21cAj,22cBj,22]
(33)

kqA
+ ) kqA (34a)

kqB
+ ) kqB (34b)

SA
+ ) SA (34c)

SB
+ ) SB (34d)

P+ ) P (34e)

Sijk(t) ) 3cj,00 exp(t Ak,00)bik,00, t g 0 (22)

Dijk(t) ) 3cj,2M exp(t ADk)bik,2M, t g 0 (23)

Ak,00 ) [-(k0A + kBA + kqA[Q]k) kAB

kBA -(k0B + kAB + kqB[Q]k) ]
(24)

ADk ) [ADk,2-2 0 0 0 0
0 ADk,2-1 0 0 0
0 0 ADk,20 0 0
0 0 0 ADk,21 0
0 0 0 0 ADk,22

] (25)

ADk,2M )

[-(DA,2M + k0A + kBA + kqA[Q]k) kAB

kBA -(DB,2M + k0B + kAB + kqB[Q]k) ]
(26)

Dl,2M ) 6D⊥l + M2(D|l - D⊥l) (27)

blik,LM ) BLblikYL
M(âl) (28)
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As for the model of reversible intramolecular two-state excited-
state processes (without species-dependent rotational motions;
section 3B), upper and lower limits on the rate constants{k0A,
kBA, k0B, kAB} can be set (eqs 16 for set S1 and eqs 20 for set
S2). The requirements for obtaining the unique set of model
parameters are the same as before. It is crucial thatkqA is
different fromkqB.

Now we consider the identifiability involvingDijk(t) (eq 23)
in which we will use the results of the identifiability analysis
of Sijk(t). We assume that the similarity transformations forSijk(t)
andDijk(t) are independent, as also are the transformations of
the various blocksADk,2M (eq 26) in ADk (eq 25). For a
cylindrically symmetricrotor, A ) ADk (eq 25) with blocks
ADk,2M given by eq 26,bik,2M (eq 30),cj,2M (eq 33),T is a block-
diagonal matrix given by eq 36:19

with the matricesTM (M ) -2, -1, 0, 1, 2) expressed as

BecauseT andA ) ADk are both block-diagonal matrices, the
matrix multiplication of eq 3 splits into five separate matrix
multiplications, two of which are identical:M ) -2 andM )
+2; M ) -1 andM ) +1.19 It is straightforward to show that
the matrix multiplication (eq 38) involvingADk,2M

+ andADk,2M

(for M ) (2, (1, 0)

also leads to two sets of alternative parameters: (1) set D1 (when
tM,1 * 0, tM,4 * 0, tM,2 ) tM,3 ) 0 in TM, eq 37) withkqA

+ , kqB
+ ,

andP+ given by eqs 34a, 34b, and 34e, respectively, and

(2) set D2 (whentM,2 * 0, tM,3 * 0, tM,1 ) tM,4 ) 0 in TM, eq
37) with kqA

+ , kqB
+ , andP+ given by eqs 35a, 35b, and 35e (or

34e), respectively, and

The equations describing sets D1 and D2 are indeed not
sufficient to lead to unique solutions for the unknown parameters
D⊥A

+ , D|A
+ , D⊥B

+ , and D|B
+ . Combinations of the eqs 39a, 39b,

40a, and 40b considered for various values ofM are linearly
dependent and cannot be used to solve for the unknown
parameters. To solve forD⊥A

+ , D|A
+ , D⊥B

+ , andD|B
+ , one should

combine the equations describing sets S1 (eq 34) and S2 (eq
35) with the extra equations describing sets D1 (eq 39 withM
) (2, (1, 0) and D2 (eq 40 withM ) (2, (1, 0).P+ ) P in
all four sets.

The combination of eq 34 (set S1) with eq 39 (set D1) leads
to

Hence, by combining sets S1 and D1, the alternative parameters
are the original ones given by eqs 34 and 41.

The combination of eq 35 (set S2) with eq 40 (set D2) yields:

Thus, by combining sets S2 and D2 the alternative parameters
are the switched ones, given by eqs 35 and 42.

The combination of set S1 (eq 34) with set D2 (eq 40) or the
combination of set S2 (eq 35) with set D1 (eq 39) are only
compatible ifSA ) SB andkqA ) kqB. The latter condition is in
conflict with kqA * kqB, which is required to obtain local
identifiability, i.e., the sets S1, S2, D1, and D2.

For all acceptable combinations, the number of alternative
bik,00 andbik,2M, andcj,00 andcj,2M is unlimited.

To summarize, the identifiability analysis involving bothSijk(t)
and Dijk(t) shows that the model of reversible intramolecular
two-state excited-state processes with quenching and coupled
rotational diffusion for acylindrically symmetricellipsoid
produces two sets of kinetic parameters (i.e., quenching rate
constants, combinations of exchange and deactivation rate
constants, rotational diffusion coefficients) with switched labels.
This means that in the absence of a priori information one cannot
assign these parameters to a specific species.

We now consider the case in whichf(t, A, b, c) ) Dijk(t) for
aspherically symmetricrotor. AsDl ) D|l ) D⊥l, the expression
for Dl,2M (eq 27) becomes independent ofM and reduces toDl,2M

) 6Dl.
An identification analysis similar to that for thecylindrically

symmetricellipsoid also gives two solutions: (1) the set of
alternative quenching rate constants and combinations of
deactivation/exchange rate constants is the original set (S1, eq
34), and the alternative rotational diffusion coefficients are the
original ones (eq 43):

(2) The second set of alternative quenching rate constants and
combinations of deactivation/exchange rate constants is given
by eq 35 (set S2) and the alternative rotational diffusion

kqA
+ ) kqB (35a)

kqB
+ ) kqA (35b)

SA
+ ) SB (35c)

SB
+ ) SA (35d)

P+ ) P (35e)

T ) [T-2 0 0 0 0
0 T-1 0 0 0
0 0 T0 0 0
0 0 0 T1 0
0 0 0 0 T2

] (36)

TM ) [tM,1 tM,2

tM,3 tM,4] (37)

TM ADk,2M
+ ) ADk,2M TM (38)

SA
+ + DA,2M

+ ) SA + DA,2M (39a)

SB
+ + DB,2M

+ ) SB + DB,2M (39b)

SA
+ + DA,2M

+ ) SB + DB,2M (40a)

SB
+ + DB,2M

+ ) SA + DA,2M (40b)

D⊥A
+ ) D⊥A (41a)

D|A
+ ) D|A (41b)

D⊥B
+ ) D⊥B (41c)

D|B
+ ) D|B (41d)

D⊥A
+ ) D⊥B (42a)

D|A
+ ) D|B (42b)

D⊥B
+ ) D⊥A (42c)

D|B
+ ) D|A (42d)

DA
+ ) DA (43a)

DB
+ ) DB (43b)
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coefficients are given by eq 44:

Hence, for a spherically symmetric rotor also, as would be
expected from the result for the cylindrically symmetric one,
of which it is a reduced case, two sets of kinetic parameters are
possible: the original ones and those with switched labels. This
model is thus only locally identifiable.

4. Conclusions

In this paper, we have examined the feasibility of obtaining
information from reversible intramolecular two-state excited-
state events. We have demonstrated that similarity transforma-
tions can be applied effectively to study the deterministic
identifiability of three kinetic models of reversible intramolecular
two-state excited-state processes in isotropic environments. The
simplest model has neither quencher nor linked species-
dependent rotational motions and is unidentifiable. We have
specified the conditions under which this model becomes
uniquely identifiable. When the initial model is expanded to
include a quencher, two sets of quenching rate constants and
combinations of excited-state deactivation/exchange rate con-
stants are possible. These combinations are always associated
with the proper quenching rate constants but, without extra
(spectroscopic and/or kinetic) information, they cannot be
allocated to a specific excited species. Upper and lower limits
can be assigned to the deactivation and exchange rate constants
for both sets. The requirements for obtaining unique identifi-
ability are discussed. In the final model considered, species-
dependent rotational diffusion is coupled with the reversible
intramolecular two-state excited-state process in the presence
of quencher. The functionsI|(t) andI⊥(t) are used to define the
functionsS(t) andD(t). The sum curveS(t) describes the time
dependence of the total fluorescence and contains information
only on the excited states as a whole. In the difference curve
D(t), the rotational kinetic behavior interacts directly with the
overall excited-state kinetics. Because of the clear dependence
of S(t) and D(t) on A, b, and c, the identification is more
straightforward if one usesS(t) and D(t) instead ofI|(t) and
I⊥(t). The identifiability analysis involvingS(t) is the same as
for the previous model with quencher (in the absence of species-
dependent rotational motions). Coupling the rotational diffusion
with the overall excited-state kinetics of a reversible intramo-
lecular two-state excited-state process in the presence of
quencher leads to two sets of kinetic parameters (i.e., quenching
rate constants, combinations of deactivation/exchange rate
constants, and rotational diffusion coefficients), but these
parameters cannot be assigned unambiguously to a specific
species. It has to be emphasized that although separate deactiva-
tion (k0A, k0B) and exchange (kAB, kBA) rate constants cannot be
determined without a priori information, the quenching rate
constant for species A* (respectively B*) is always correctly
associated with the rotational diffusion constant of A* (respec-
tively B*). In the absence of extra information, the number of
alternative spectroscopic parameters (b+ andc+) is limitless in
all three models. The similarity transformation approach used
here for the identifiability analysis not only indicates if a model
is identifiable or not but has the important advantage of
providing explicit relationships between the true and the
alternative model parameters.

The last model, which includes a quencher and species-
dependent rotational motions, may well be applicable to a wide

range of molecular and biomolecular systems. Possible applica-
tions, such as reversible intramolecular excimer and exciplex
formation, and conformational change, are depicted schemati-
cally in Figure 2.

The deterministic identifiability study presented here consti-
tutes the essential first stage in the analysis of intramolecular
two-state excited-state events. The deterministic identification
problem reduces to the question of whether a system of algebraic
equations has a unique solution. The importance of identifiability
analyses in photophysics is not yet fully recognized at present.
Besides the intrinsic importance of the specific work reported,
this study highlights the importance of identifiability applied
to photophysical systems.
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